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Abstract Mathematical modeling of drug delivery is of

increasing academic and industrial importance in many

aspects. In this paper, we propose an optimization approach

for the estimation of the parameters characterizing the

diffusion process of a drug from a spherical porous poly-

mer device to an external finite volume. The approach is

based on a nonlinear least-squares method and a novel

mathematical model which takes into consideration both

boundary layer effect and initial burst phenomenon. An

analytical solution to the model is derived and a formula

for the ratio of the mass released in a given time interval

and the total mass released in infinite time is also obtained.

The approach has been tested using experimental data of

the diffusion of prednisolone 21-hemisuccinate sodium salt

from spherical devices made of porous poly(2-hydroxy-

ethyl methacrylate) hydrogels. The effectiveness and

accuracy of the method are well demonstrated by the

numerical results. The model was used to determine the

diffusion parameters including the effective diffusion

coefficient of the drug from a series of devices that vary in

both the porous structure and the drug loading levels. The

computed diffusion parameters are discussed in relation to

the physical properties of the devices.

Keywords Controlled drug delivery � Effective diffusion

coefficient � Optimization � Diffusion equation �
Hydrogels

1 Introduction

Mathematical modeling of drug delivery is a field of sig-

nificant academic and economic importance. This is true not

only in the biopharmaceutical disciplines [1], but also in the

increasingly active tissue engineering research field where

the development of three dimensional scaffolds meeting the

requirements of cell migration, tissue growth, and the

transportation of nutritious chemicals such as growth factors

is still a challenge [2]. An ideal delivery requires a device to

supply and release therapeutic agents to a desired location

with a precise therapeutic dose for a prolonged period of time

[3]. The controllability of the delivery is dependent on many

variables. These include the transport properties and the

dosage of the drugs, the physiochemical and structural

properties, the dimensions and geometry as well as the

release mechanisms of the drug delivery systems. Effec-

tively predicting these parameters and ultimately optimizing

the design of a drug delivery system using mathematical

approaches can significantly reduce manufacturing costs of

both new and existing products [1].

On the other hand, mathematical tools, particularly

numerical partial differential equation and optimization

techniques have been used successfully and extensively in

optimum designs of many engineering devices such as

semiconductor devices (cf., for example, [4–7]). Despite

the success of these techniques in many areas, reports on
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the systematic use of advanced mathematical tools in the

design of controlled drug delivery devices are limited in the

open literature, except for some simple models with known

analytical solutions of the diffusion equation (cf., for

example, [8–10]). Our previous studies have shown that the

mathematical approach is indeed useful in interpreting

experimental data and establishing the relationship

between the drug release characteristics and the material

structures [11, 12]. This paper extends our studies on the

parameter estimation of controlled drug delivery systems

of a disk geometry to a spherical geometry using similar

mathematical tools. The drug delivery systems used in our

studies are based on a porous matrix made of poly(2-

hydroxyethyl methacrylate) (PHEMA) hydrogels.

PHEMA is well known for its biomedical applications

as contact lenses, intraocular lenses and cardiovascular

implants [13, 14]. Materials based on PHEMA absorb large

amounts of water without dissolving, and in their swollen

state they behave like typical gels. Therefore, the term

hydrogels is commonly employed for them. In most

applications PHEMA hydrogels refer to the crosslinked

polymers produced by bulk polymerization which are

transparent and contain a homogeneous polymer matrix

containing pores measured in nanometers. Although poly-

mers of this type allow the diffusion of various solutes,

their transport properties are limited by effective mean

pores, or mesh diameters, within the polymer. They are

more suited for such applications as contact lenses, in

which a combination of optical clarity and limited diffusive

characteristics is required [15].

Various methods can be used to increase the effective

pore sizes of PHEMA. One of the most convenient meth-

ods is to polymerize the HEMA monomer in the presence

of water above a critical level (reportedly 40–45%) (cf.

[11] and the references quoted). The materials produced in

the presence of water possess high water content and pores

ranging from several to hundreds of microns. The bio-

medical applications of porous PHEMA materials include a

novel design of an artificial cornea and an orbit implant in

which the porous PHEMA skirt allows host cells and tissue

to grow into the device therefore preventing extrusion of

the implants [16–18]. Our recent studies show that the

porous PHEMA hydrogels represent a significant advance

over the non-porous types in the drug delivery applications

with a much higher drug loading capacity. The loading of

drugs can be achieved in ambient conditions with very

simple means, less concerning about the drug stability [11,

12]. To achieve an optimal design of such a device, we

have been investigating mathematical models for (1)

extracting the effective diffusion coefficient of a selected

drug; and (2) further establishing the relationship between

the diffusion characteristics and various parameters of the

drug delivery system including the drug loading level, the

porosity and the geometry of the polymer matrix.

It is worth mentioning that drug delivery from porous

PHEMA is diffusion driven. In a diffusion-controlled

device, the delivery of drugs is largely dependent on the

diffusion property of the drug in a constructed device,

which is often characterized by the effective diffusion

coefficient of the drug in the material. The effective dif-

fusion coefficient of a drug delivery system is a measure of

the diffusion process of a drug through a selected system

over a period of time. It is determined mainly by the

properties of a polymer matrix and the interactions, if any,

between the drug and the polymer matrix. For a given

device, drug release profiles from the device into a finite

volume during a period of time can be determined through

laboratory experiments. The estimation of the effective

diffusion coefficient of the drug during the process involves

two tasks. One task is to set up a mathematical model for

the diffusion process of the device and the other is to

numerically estimate the effective diffusion coefficient

based on the model and some given information such as

experimentally observed drug release data.

In general, a diffusion process is governed by a diffusion

equation with appropriate initial and boundary conditions.

However, solving such a diffusion problem analytically is

very difficult. Analytical and approximate solutions to sev-

eral simple models can be found in [1, 19–22]. Some widely

used models such as those in [22] are based on the assump-

tion that the liquid in the diffusion region is ‘well-stirred’,

i.e., the concentration of the substance in the liquid is uni-

form which is not always true. In practice, even if the liquid is

‘well stirred’ the magnitude of the flow velocity on the

boundary of the device should be zero due to the so-called

‘no-slip’ boundary condition. Therefore, there exists a

region, called a boundary layer, near the boundary of the

device in which the magnitude of velocity varies from zero to

some positive value. As a result, the substance concentration

is non-uniform in the boundary layer. Furthermore, exces-

sive drugs may be left on the surface of the device which

causes a higher concentration on the surface than in the

subsurface of the device. It is also possible that the drug

concentration on the surface is lower than that in the sub-

surface of the device if the device is pre-washed prior to a

drug release experiment. Both of these cases may lead to an

initial phase of the drug release that is different from the rest

of the process. Therefore, it is desirable to determine an

effective critical time separating the two phases and to

extract the effective diffusion coefficients for the two phases.

Once a diffusion model has been established, one needs

to determine the effective diffusion coefficient using the

model. A classical ‘trial-and-error’ process is neither

optimal nor automatic. In our previous work [23], we have

proposed a model for the estimation of effective diffusion
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coefficients and other critical parameters of PHEMA

devices of a 2D disc geometry. The model was used in

conjunction with a nonlinear least-squares method. Unlike

existing ones such as those in [22], this model can handle

both the initial burst and boundary layer effects. In the

present work, we extend the techniques in [23] to devices

of a spherical geometry (Fig. 1). We first propose a basic

mathematical model governing the diffusion process of a

drug from a spherical device into a finite volume. The

model is then further developed to include both the initial

burst and the boundary layer effects. Analytical solutions to

these mathematical problems are then obtained to provide

explicit expressions for the total mass diffused from the

device into the external volume in a given period of time.

The unknown parameters including the effective diffusion

coefficients, the width of the boundary layer and the critical

time in the models are determined by an optimization

technique. Six porous PHEMA spherical devices that

contain various pore structures and different levels of

prednisolone 21-hemisuccinate sodium salt, a commonly

used anti inflammation drug, are then prepared. The drug

release experiments are conducted and the acquired data

are used to test the mathematical models. The full model is

finally used to determine the diffusion parameters includ-

ing the critical time for the initial burst of drugs, the

effective boundary layer, and the effective diffusion coef-

ficient of the drug from these devices. The drug diffusion

characteristics are discussed in relation to the physical

properties of the devices.

2 The mathematical methods

2.1 The basic model and its analytical solution

We first consider a spherical device with radius r1 pre-

loaded with an amount of drug, M0: Assuming, (1) the

device is placed in a sphere container of radius r2 filled

with water so that the device and the container are con-

centric, as depicted in Fig. 2; and (2) the release process

is diffusion-dominant and radial because of symmetry,

i.e., the concentration of drug in liquid is uniform for a

fixed r, the diffusion process of this problem is governed

by the following diffusion equation in spherical

coordinates:

oCðr; tÞ
ot

¼ D
o2Cðr; tÞ

or2
þ 2

r

oCðr; tÞ
or

� �
; 0\r\r2; t [ 0;

ð1Þ
oCðr2; tÞ

or
¼ 0; t [ 0; ð2Þ

Cðr; 0Þ ¼ HðrÞ; ð3Þ

where D is a constant and Cðr; tÞ is the unknown

concentration.

We assume that at t ¼ 0; the concentration is uniform in

the device and zero in liquid, i.e.,

HðrÞ ¼ M0=Vd;
0;

�
0\r\r1;
r1\r\r2;

ð4Þ

where Vd ¼ 4p r3
1=3 is the volume of the device. To solve

this problem, we use the technique of separation of vari-

ables as outlined below.

Let Cðr; tÞ ¼ uðtÞvðrÞ: Equation 1 then becomes

u0v ¼ D uv00 þ 2

r
uv0

� �
¼ Du v00 þ 2

r
v0

� �
:

From this we have

u0

Du
¼

v00 þ 2
rv
0

v
¼ �k;

where k [ 0 is a constant to be determined. The above

expression contains two equations:

Fig. 1 Schematic illustration of a porous PHEMA spherical device

r1

r2

Fig. 2 A sphere device with radius r1 placed in a container with

radius r2
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u0 þ kDu ¼ 0; ð5Þ

v00 þ 2

r
v0 þ kv ¼ 0: ð6Þ

Equation 5 has the (fundamental) solution u ¼ e�kDt and

Eq. 6 is a Bessel’s equation of the form

y00 þ ðd � 1Þy0=xþ ðk� l=x2Þy ¼ 0

with d ¼ 3 and l ¼ 0: The fundamental solution to this

equation is (cf., for example, [24, p. 231])

vðrÞ ¼ j0 r
ffiffiffi
k
p� �

;

where j0ðzÞ ¼ sin z
z is the 0th order spherical Bessel function.

Therefore, the solution of Eq. 1 is of the form

Ckðr; tÞ ¼ j0 r
ffiffiffi
k
p� �

e�kDt; ð7Þ

where k is a parameter called the eigenvalue of the

problem. To determine k; we apply the boundary

condition 2 to Eq. 7 to get

oCkðr2; tÞ
or

¼ j00 r2

ffiffiffi
k
p� � ffiffiffi

k
p

e�kDt ¼ 0:

This implies j00ðr2

ffiffiffi
k
p
Þ ¼ 0: Let an [ 0 be such that

j00 anð Þ ¼
an cos an � sin an

a2
n

¼ 0 for n ¼ 1; 2; . . . ð8Þ

Then, we have r2

ffiffiffi
k
p
¼ an or

kn ¼ a2
n=r2

2 for n ¼ 1; 2; . . .

Substituting the above kn into Eq. 7 gives

Ckn
ðr; tÞ ¼ j0

ran

r2

� �
e�Da2

nt=r2
2 :

This is a solution to Eq. 1 for each n ¼ 1; 2; . . .:
When k ¼ 0; Eq. 6 has the general solution

v ¼ B0

r
þ A0 ð9Þ

with additive constants A0 and B0: (note a0 ¼ 0 is also a root

of Eq. 8 and thus k ¼ 0 is the eigenvalue corresponding to

this root.) Thus, Eq. 9 represents the steady-state solution to

Eqs. 1–3. Applying the boundary condition Eqs. 2–9 gives

B0 ¼ 0: Therefore, combining the fundamental solutions to

Eqs. 5 and 6 and using the superposition principle, we have

the following series solution to Eq. 1:

Cðr; tÞ ¼
X1
n¼0

Anj0

anr

r2

� �
e�Da2

nt=r2
2 ; ð10Þ

where An’s are coefficients to be determined. (Recall that

a0 ¼ 0 and j0ð0Þ ¼ 1:)

Note that the steady-state solution of the problem when

t!1 is Cðr;1Þ ¼ M0=Vc; where Vc ¼ 4p r3
2=3 is the

volume of the container. Therefore, we have, from

Eq. 10,

A0 ¼ M0=Vc: ð11Þ

Before determining the coefficients An; n ¼ 1; 2; . . .; we

first note that

Zr2

0

j0

ram

r2

� �
� j0

ran

r2

� �
r2dr

¼
0; m 6¼ n; am; an� 0;
r3

2

2
cos2 an; m ¼ n; an [ 0:

(
ð12Þ

The derivation of this integral is given in the appendix.

We now use the initial condition 3 and the above results

to determine An; for n ¼ 1; 2; . . .: Applying the initial

condition 3 to 10 and using Eq. 11 we have

Cðr; 0Þ ¼ M0

Vc

þ
X1
n¼1

Anj0

ran

r2

� �
¼ HðrÞ;

where H is the function defined in Eq. 4. Multiplying both

sides of the above equation by r2j0ðram=r2Þ for any m ¼
1; 2; . . .; integrating the resulting equation from 0 to r2 and

using Eq. 4, where HðrÞ is zero from r1 to r2; and Eq. 12,

we have

Am �
r3

2

2
cos2 am ¼

3M0

4pr3
1

Zr1

0

r2j0 r
am

r2

� �
dr

¼ 3M0

4pr3
1

Zram

0

r3
2

a3
m

u sin udu u ¼ ram=r2ð ; r ¼ r1=r2Þ

¼ 3M0

4pr3
1

r3
2

a3
m

sin u� u cos u½ � ram

0

¼ 3M0

4pr3
1

r3
2

a3
m

sinðramÞ � ram cosðramÞ½ �

¼ 3M0

4pr3
1

r3
2

a3
m

ramð Þ2j1 ramð Þ

¼ 3M0

4pram
j1 ramð Þ;

where j1ðzÞ ¼ ðsin zÞ=z2 � ðcos zÞ=z is the first order

spherical Bessel function (cf., for example, [24], p. 233).

We thus have

Am ¼
3M0

2pramr3
2 cos2 am

j1 ramð Þ; m ¼ 1; 2; . . . ð13Þ

Substituting Eqs. 11 and 13 into Eq. 10 we finally get

Cðr; tÞ ¼ M0

Vc

þ 3M0

2pr r3
2

X1
n¼1

j1ðranÞ
an cos2 an

j0
anr

r2

� �
e�Da2

nt=r2
2 :

ð14Þ

662 Theor Chem Acc (2010) 125:659–669

123



This is an analytical solution to Eqs. 1–3 in the region

defined by 0\r\r2 and 0\t\1:

2.2 Total mass released in ½0; t� from the device

We now derive the total mass released from the device into

the container in the time interval [0, t], denoted as Mt: For

clarity, we let

KnðtÞ ¼
j1ðranÞ

an cos2 an
e�Da2

nt=r2
2 :

Multiplying both sides of Eq. 14 by r2 sin u dh du dr and

integrating the resulting equation over the region:

0� h� 2p; 0�u� p and r1� r� r2; we have

Mt ¼ 4p
Zr2

r1

Cðr; tÞr2dr

¼ M0ðVc � VdÞ
Vc

þ 6M0

rr3
2

X1
n¼1

KnðtÞ
Zr2

r1

j0
anr

r2

� �
r2dr

¼ M0ðVc � VdÞ
Vc

þ 6M0

rr3
2

X1
n¼1

KnðtÞ

�
Zan

ran

r3
2

a3
n

u sin udu u ¼ ram

r2

�
; r ¼ r1

r2

�

¼ M0ðVc � VdÞ
Vc

þ 6M0

rr3
2

X1
n¼1

KnðtÞ
r3

2

a3
n

sin u� u cos u½ �an

ran

¼ M0ðVc � VdÞ
Vc

� 6M0r
X1
n¼1

KnðtÞ
an

j1 ranð Þ

¼ M0ðVc � VdÞ
Vc

� 6M0r
X1
n¼1

j21ðranÞ
a2

n cos2 an
e�Da2

nt=r2
2 : ð15Þ

In the above we used Eq. 8. When t!1; we have

Mt ! M1 ¼
M0

Vc

ðVc � VdÞ

which is the total mass released from the device into the

external volume in the time interval ½0;1�: Dividing both

sides of Eq. 15 by M1 gives

Mt

M1
¼ 1� 6r

1� r3

X1
n¼1

j2
1ðranÞ

a2
n cos2 an

e�Da2
nt=r2

2

¼ 1� 6r
1� r3

X1
n¼1

j21ðranÞ
sin2 an

e�Da2
nt=r2

2 : ð16Þ

This is a formula for the ratio of the mass released from the

device into the liquid during the time interval [0, t] and the

total mass release from the device in infinite time. We

comment that the deduction of Eq. 16 is based on the

assumptions that the device and container are concentric as

depicted in Fig. 2 and that the diffusion in the liquid is

homogeneous. These assumptions are normally satisfied in

ideal laboratory conditions. When the assumptions are not

satisfied, the diffusion problems 1–3 can only be solved by

a full numerical method which will be discussed in a future

paper.

2.3 The initial burst

A burst often appears in the initial phase of a release

process. This is because, during the drug load process,

some free drugs are left on the device surface. In this case,

the initial release rate is substantially greater than that

during the rest of the process. On the other hand, the initial

release rate may also be much smaller than the normal rate

if a device is pre-washed to remove the free drugs on the

device surface. In both cases, it is desirable to identify the

initial burst and its effect on the diffusion process. To

characterize the initial burst, we assume that the effective

diffusion coefficient is a piecewise constant in time, i.e.,

D ¼ D0; 0\t\tc;
D1; t [ tc;

�

where D0 and D1 are constants and tc is the threshold time.

All of these parameters are yet to be determined. From

Sect. 2.2 we see that when 0� t� tc; the concentration

Cðr; tÞ is given by Eq. 14 with D ¼ D0: Using the same

argument as that for Eq. 10 we have

Cðr; tÞ ¼
X1
n¼0

Anj0

anr

r2

� �
e�D1a2

nt=r2
2 ; t [ tc; ð17Þ

where An’s are coefficients to be determined. Using the

same argument employed for determining A0in Eq. 10 we

have A0 ¼ M0=Vc: The continuity condition at tc that

Cðr; t�c Þ ¼ Cðr; tþc Þ for all admissible r gives

X1
n¼0

Anj0

anr

r2

� �
e�D1a2

ntc=r2
2 ¼ A0 þ

3M0

2prr3
2

�
X1
n¼1

j1ðranÞ
an cos2 an

j0

anr

r2

� �
e�D0a2

ntc=r2
2 :

Matching the coefficients on both sides of the above

equality, we have

A0 ¼ A0 ¼
M0

Vc

and An ¼
3M0

2pr r3
2

j1ðranÞ
an cos2 an

e�ðD0�D1Þa2
ntc=r2

2

ð18Þ

for n� 1: Combining this with Eq. 17 we have the

expression for Cðr; tÞ when t [ tc:

It is clear that when 0� t� tc;
Mt

M1
is given by Eq. 16

with D ¼ D0: Using the same argument as that for Eq. 16,

it is easy to show from Eqs. 17 and 18 that
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Mt

M1
¼ 1� 6r

ð1� r3Þ
X1
n¼1

j2
1 ranð Þ
sin2 an

e�a2
nðD1ðt�tcÞþD0tcÞ=r2

2 ;

for t [ tc: ð19Þ

2.4 Effective boundary layer

When the liquid is well stirred, the concentration can be

considered uniform in most of the liquid region except for a

thin layer, called the boundary layer, around the device. In

this case, the diffusion dominates the mass transfer only

in the boundary layer region. For simplicity we assume that

thickness of the boundary layer is uniform around

the device. Let r1 denote the radius of the device, r2 � r1

the thickness of the boundary layer and r3the radius of the

container, satisfying 0\r1\r2� r3: The geometry is

depicted in Fig. 3.

The problem can be formulated as

oĈðr; tÞ
ot

¼ D
o2Ĉðr; tÞ

or2
þ 2

r

oĈðr; tÞ
or

 !
; 0\r\r2; t [ 0;

Ĉðr; tÞ ¼ C0ðtÞ; r2� r� r3; t [ 0;

Ĉðr; 0Þ ¼
M0

Vd
; 0\r� r1;

0; r1\r\r3;

�

where Vd ¼ 4p r3
1=3; the volume of the device as defined

before, and C0ðtÞ is the (unknown) concentration outside

the layer. The second equation above represents the fact

that from r2 to r3; the concentration is uniform. Using the

results in Sect. 2.1 it is easy to verify that the solution to

this problem is

Ĉðr; tÞ ¼ Cðr; tÞ; r 2 ð0; r2Þ;
C0ðtÞ r 2 ½r2; r3�

�
ð20Þ

for t [ 0 with the continuity condition C0ðtÞ ¼ Cðr2; tÞ;
where Cðr; tÞ is given by Eq. 14. We now calculate the

total mass, Mt; released in time t. Note that Mt contains

two parts: the mass at t in the boundary layer region

ðr1; r2Þ � ð0; 2pÞ and that in the convection-dominant

region ðr2; r3Þ � ð0; 2pÞ: The calculation of the former is

exactly the same as that for Eq. 16 and the latter is just

the constant concentration Cðr2; tÞ times the correspond-

ing volume.

Let Vc ¼ 4p r3
2=3; as defined before, and V̂c ¼ 4p r3

3=3;

the volume of the container. Following the derivation of

Eq. 16 we have, from Eqs. 14, 20 and the above analysis,

M̂t ¼
M0

V̂c

ðVc � VdÞ � 6M0r
X1
n¼1

j21 ranð Þ
sin2 an

e�Da2
nt=r2

2

þ Cðr2; tÞðV̂c � VcÞ

¼ M0

V̂c

ðV̂c � VdÞ � 6M0r
X1
n¼1

j2
1 ranð Þ
sin2 an

e�Da2
nt=r2

2

þ 3M0

2pr r3
2

ðV̂c � VcÞ
X1
n¼1

j1ðranÞ
an cos2 an

j0ðanÞe�Da2
nt=r2

2

Let M̂1 ¼ M0

V̂c
ðV̂c � VdÞ; representing the total mass in the

liquid after infinite time. Dividing both sides of the above

equation by M̂1; we have

M̂t

M̂1
¼ 1� 6r

ð1� q3Þ
X1
n¼1

j2
1 ranð Þ
sin2 an

e�Da2
nt=r2

2

þ
2 1

c3 � 1
� �

rð1� q3Þ
X1
n¼1

anj1ðranÞ
sin2 an

j0ðanÞe�Da2
nt=r2

2

¼ 1� 2

ð1� q3Þ
X1
n¼1

j1 ranð Þ
sin2 an

� 3r j1 ranð Þ � anj0ðanÞ
r

1

c3
� 1

� �� �
e�Da2

nt=r2
2 ; ð21Þ

where r ¼ r1

r2
; c ¼ r2

r3
and q ¼ r1

r3
:

Using Eq. 21 and the technique in Sect. 2.3 for deducing

Eq. 19 it is easy to derive the following formula containing

both the initial burst and the convection phenomena: i.e.,
M̂t

M̂1
is given by Eq. 21 with D ¼ D0 when 0\t� tc and

M̂t

M̂1
¼ 1� 2

ð1� q3Þ
X1
n¼1

j1 ranð Þ
sin2 an

3r j1 ranð Þ � anj0ðanÞ
r

�

� 1

c3
� 1

� ��
e�a2

nðD1ðt�tcÞþD0tcÞ=r2
2 ð22Þ

for t [ tc; where tc is the effective critical time.

We comment that the thickness of the boundary layer,

r2 � r1; cannot normally be determined exactly. In this

investigation, we treat r2 as a decision parameter in an

optimization process, and refer to the resulting value as the

effective boundary layer.

r1
r2

r3

Boundary layer

Fig. 3 A spherical device with radius r1 placed in a container with

radius r3
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3 Device preparation, drug loading and release

experiments

3.1 Chemicals and materials

HEMA (Bimax, ophthalmic grade) was used as received.

The cross-linking agent 1,5-hexadiene-3,4-diol (DVG) with

a purity of 97% was supplied by Sigma-Aldrich. An aque-

ous solution of 10 wt% ammonium persulphate (APS) (Ajax

Chemicals) was used together with N,N,N0,N0-tetramethyl-

ethylene diamine (TEMED) (Aldrich Chemical Co.) as

initiators. Prednisolone 21-hemissucinate sodium salt

powder was purchased from Sigma Chemical Co., Belgium.

Deionised water was used for all experiments in the study.

3.2 Device preparation

Three porous PHEMA spherical devices, S2080, S3070

and S4060 were cast following the specifications given in

Table 1. The formulations were selected to produce devi-

ces chemically identical but structurally different. The

physical properties including the swelling behavior, the

polymer volume fraction, density of the dry and wet

polymer hydrogels have been reported in our previous

work [11, 12]. To cast the polymer devices, HEMA and

water were well mixed in a beaker followed by the addition

of the cross-linking agent (DVG) and the initiators (APS

and TEMED). The solution was then distributed into a

plastic mold as displayed in Fig. 4a. Polymerization was

carried out at room temperature for 3 h and then at 50 �C

for 24 h. Following the polymerization, the samples were

removed from the mold and immersed in deionised water

for 4 weeks with daily water exchange to remove residual

monomers and oligomers. Photographs of the produced

spherical devices are displayed in Fig. 4b.

3.3 Drug loading and release experiments

Upon completion of water exchange the devices were

freeze-dried and placed in containers containing a drug

solution of either 1.0 or 0.5 wt% concentration. Sufficient

drug solution was added to allow the maximum absorption

of the drugs upon swelling of the devices.

The drug loaded devices, S2080-10, S3070-10, S40-60-10,

S2080-05, S3070-05 and S4060-05 were then placed in the

centre of a container which has an air tight seal (10 and 05

are used in the sample codes representing the 1.0 and 0.5

wt% drug solution, respectively). The container was then

filled with enough deionised water and placed upon an

orbital shaker (Chiltern Scientific) at a speed of 45 rpm. At

preset time points 500 lL of the drug solution was removed

from a marked location and further diluted for quantitative

analysis of released drug concentrations Mt using a UV–Vis

spectrometer. Details of the quantitative analysis of drugs

can be found in our previous work [11, 12].

4 Results and discussions

4.1 Testing the mathematical models

In this section, we will test the models established in the

previous section using some experimental data.

The series solutions obtained from Sect. 3 contain up to four

unknown parameters D0;D1; tc and r2: To determine these

parameters, a nonlinear least-squares algorithm is used as

proposed in [23]. The algorithm is to minimize the fitting error

Eðtc;D0;D1; hÞ ¼
XK

k¼1

ReðtkÞ � RNðtk; tc;D0;D1; hÞð Þ2wk;

ð23Þ

where wk is a positive constant, ReðtkÞ is the experimentally

measured value of the ratio Mt

M1
(or M̂t

M̂1
) at tk for k ¼

1; 2; . . .;K; and h ¼ ðr2 � r1Þ=ðr3 � r1Þ is a parameter

characterizing the width of the boundary layer satisfying

0\h� 1: The quantity RN in Eq. 23 is the sum of the first N

terms of an exact solution of the ratio. For instance, RN for

the solution in Sect. 2.3 (i.e., Eqs. 16 and 19) is given by

RNðt; tc;D0;D1Þ

¼
1� 6r

ð1�r3Þ
PN
n¼1

j2
1

ranð Þ
sin2 an

e�D0a2
nt=r2

2 ; t� tc;

1� 6r
ð1�r3Þ

PN
n¼1

j2
1

ranð Þ
sin2 an

e�a2
nðD1ðt�tcÞþD0tcÞ=r2

2 ; t [ tc:

8>>><
>>>:

(In this case h ¼ 1 is not a decision variable since

r2 ¼ r3.) For simplicity, we assume that tc only takes

Table 1 Chemical formulations for PHEMA device preparation

Device Name HEMA

(g)

Water

(g)

DVG

(lL)

APS (10%)

(lL)

TEMED

(lL)

S2080 50 200 500 1,000 1,000

S3070 75 175 750 1,500 1,500

S4060 100 150 1,000 2,000 2,000

Fig. 4 Photographs of a the plastic mold and b the spherical PHEMA

devices
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values from the discrete set t1; t2; . . .; tKf g: For all the tests

below, we choose N ¼ 62: The first 62 roots of Eq. 8 are

calculated numerically using Matlab. To avoid possible

local minima, the least-squares problem is solved using the

following initial starting points

D0 ¼ D1 ¼ 10�5=2i for i ¼ 1; 2; . . .; 10 and h ¼ 0:1j
for j ¼ 1; 2; . . .; 10:

The weights in Eq. 23 are chosen to be wk ¼
Kðtk � tk�1Þ=tN for k ¼ 1; 2; . . .;K with t0 ¼ 0:

In what follows, we shall refer the solution 16 to as

Model BM, the solutions 1 and 19 to as Model IB, Eq. 21

to as Model BL and Eqs. 21 and 22 to as Model IB ? BL.

4.2 The effect of initial burst

In order to see the effect of initial burst, experimental data

of S2080-10, Mt=M1; collected at 12 time points from

0.5 h to 72.8 h (Table 2) were fitted with all four models.

The radius of the device, r1; was measured as 0.906 cm and

the radius of the effective container, i.e., r2 in Models BM

and IB or r3 in Models BL and IB ? BL, used in experi-

ments is 2.037 cm.

The fitted curves using the four models BM, IB, BL

and IB ? BL are displayed in Fig. 5. The curves fitted

by BM and BL are almost identical, so are those fitted

by IB and IB ? BL which indicate an insignificant

boundary layer effect for the selected device. On the

other hand, an apparent initial burst from device S2080-10

is identified by both IB and IB ? BL. The fittings by

Models IB and IB ? BL are more satisfactory than those

by Models BM and BL. The more adequate approxi-

mation by Models IB and IB ? BL is also demonstrated

by a ten-fold smaller value of the lease squares error of

these methods in comparison with the other two models

(Table 3).

4.3 The effective boundary layer

To determine the effective boundary layer, similar fit-

tings were performed on the experimental data from the

device S4060-05 (Table 2). The fitted curves from the

four models are displayed in Fig. 6 and the computed

optimal parameters are listed in Table 4. In this case, a

minor drug burst during the first two hours is revealed

by both IB and IB ? BL (Fig. 6). In addition, effective

boundary layers, measured as h = 93 and 84%, are

identified by BL and IB ? BL, respectively (Table 4).

For this particular device, the computed values of the

effective diffusion coefficient from the four models are

similar. However, the best fit is obtained by the com-

bined model IB ? BL which is demonstrated by the

smallest least squares error of the fitting.

4.4 Determination of the diffusion parameters

Applying the four mathematical models to the experi-

mental data of all investigated devices has indicated that,

(1) models IB and IB ? BL yield better fitting and

approximation results when an initial burst of drugs

occurs, (2) the effective boundary layers are not always

present in the spherical devices investigated in this study,

however when the effect is apparent, models BL and

IB ? BL are more efficient to identify the phenomenon,

Table 2 Experimental data of Mt=M1 for S2080-10 and S4060-05

Time (h) 0.5 1.0 1.5 2.0 3.0 4.5

S2080-10 0.577 0.671 0.675 0.686 0.697 0.732

S4060-05 0.158 0.212 0.230 0.260 0.286 0.332

Time (h) 6.9 24.9 32.7 51.0 55.8 72.8

S2080-10 0.866 0.934 0.963 0.989 0.980 1.000

S4060-05 0.365 0.645 0.781 0.971 0.973 1.000

Fig. 5 Fitted curves by the four mathematical models for S2080-10

Table 3 Results from Models BM, IB, BL and IB ? BL for S2080-10

Model Diffusivity (cm2/s) tc (h) h Least-squares error

BM 1.56E-5 – – 2.81E-2

IB (4.13E-5, 3.65E-6) 1.0 – 2.85E-3

BL 1.56E-5 – 1.00 2.81E-2

IB ? BL (4.13E-5, 3.65E-6) 1.0 1.00 2.85E-3
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and (3) in all devices, the combined model IB ? BL has

produced more satisfactory results than the individual

models developed, judged by the ability to identify the

effect of the initial burst and the effective boundary

layers, as well as by the smaller least square errors.

Therefore, only the computed parameters from Model

IB ? BL are listed and used for further discussions

(Table 5). Fittings of all experimental data by the com-

bined model are shown in Fig. 7a and b.

4.5 Comparison of the diffusion parameters

The computed parameters listed in Table 5 demonstrate

that the corrected effective diffusion coefficient, D1; of

S2080 is greater than that of S3070, and greater still than

that of S4060 at both drug loading levels. The descending

trend of D1in devices loaded with 1.0 wt% drug solutions is

more significant than that in devices loaded with 0.5 wt%

drug solutions. These observations are coincide with the

fact that S2080 has a more porous structure than the other

two devices and are also in agreement with our previous

results on the disc geometry [11, 12]. We have also noticed

that the initial burst effect in S2080 is more significant than

in the other two devices (Tables 3, 5), indicating that the

drugs are more prone to burst from S2080 due to its softer

and more porous nature.

5 Conclusions

In this work, we have developed a full mathematical

model for extracting effective parameters such as diffu-

sion coefficients, critical time of initial burst and width of

boundary layers that determine the release process of a

drug from a spherical device into a finite volume. The

model contains three other simpler models as special

cases. Explicit expressions for the analytical solutions of

these models have been obtained which contain the

parameters as unknown decision variables. A nonlinear

least-squares method is then used for finding the optimal

Fig. 6 Fitted curves by the four mathematical models for S4060-05

Table 4 Results from models BM, IB, BL and IB ? BL for S4060-05

Model Diffusivity (cm2/s) tc (h) h Least-squares error

BM 1.55E-6 – – 5.51E-2

IB (1.25E-6, 1.86E-6) 2.0 – 5.28E-2

BL 2.10E-6 – 0.93 3.69E-2

IB ? BL (2.94E-5, 2.00E-6) 0.5 0.84 2.44E-2

Table 5 Computed diffusion parameters of all devices by Model

IB ? BL

Device Diffusion coefficient

(cm2/s)

h tc (h) Least-squares error

D0 D1

S2080-10 4.13E-05 3.65E-06 1.00 1.0 2.85E-03

S3070-10 5.03E-06 2.30E-06 1.00 1.0 5.04E-03

S4060-10 1.49E-05 2.20E-06 0.92 1.0 5.11E-03

S2080-05 6.01E-06 2.83E-06 0.98 1.0 7.67E-03

S3070-05 3.44E-06 2.02E-06 0.94 2.0 8.35E-03

S4060-05 2.94E-05 2.00E-06 0.84 0.5 2.44E-02

Fig. 7 Fitted curves by model

IB ? BL for devices loaded

with a 1.0 wt% and b 0.5 wt%

drug solutions
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solutions to these parameters, yielding an optimal fit to a

set of experimental data. Numerical experiments have

been performed using laboratory observed data of three

drug release devices made of porous hydrogel polymers

with two different drug loading levels to show the accu-

racy and usefulness of the models. The results demon-

strated that the full mathematical model can effectively

identify both the drug burst effect and the effective

boundary layer, if any, and therefore can more accurately

determine the diffusion parameters that govern a true

diffusion process, whilst the three simpler models are

effective only for the uncontaminated experimental data.

The computed diffusion parameters are explicable in

terms of the drug loading concentrations and the porous

structure of the devices and are generally consistent with

the results obtained from our previous studies on the disc

geometry. Full numerical methods such as those in ref-

erences [25, 26] are under development for estimating

effective diffusion parameters of drugs from hydrogel

devices of more general geometries.
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Appendix: Derivation of Eq. 12

Case I: m 6¼ n; am; an [ 0

Zr2

0

j0

ram

r2

� �
� j0

ran

r2

� �
r2dr¼

Zr2

0

r2 sin ram

r2

� �
ram

�
r2 sin ran

r2

� �
ran

r2dr

¼ r2
2

aman

Zr2

0

sin
ram

r2

� �
sin

ran

r2

� �
dr

¼ r2
2

aman
�r2

am cosðamÞ sinðanÞ� an sinðamÞcosðanÞ
ðam� anÞðamþ anÞ

� �

¼ �r3
2

ðana3
m� ama3

nÞ
½am cosðamÞ sinðanÞ� an sinðamÞcosðanÞ

� sinðamÞ sinðanÞþ sinðamÞ sinðanÞ�

¼ �r3
2

ðana3
m� ama3

nÞ
½sinðanÞðam cosðamÞ� sinðamÞÞ

� sinðamÞðan cosðanÞ� sinðanÞ�

¼ 0;

since amand an are roots of a cosðaÞ � sinðaÞ ¼ 0:

Case II: m ¼ 0; an [ 0;

Zr2

0

j0ð0Þj0
ran

r2

� �
r2dr ¼

Zr2

0

r2 sin ran

r2

� �
ran

r2dr

¼ r2

an

Zr2

0

r sin
ran

r2

� �
dr

¼ r2

an

Zan

0

r2

an
u sinðuÞr2

an
du u ¼ ran

r2

� �
¼ r3

2

a3
n

Zan

0

u sinðuÞdu

¼ r3
2

a3
n

sinðuÞ � u cosðuÞð Þjan

0 ¼
r3

2

a3
n

sinðanÞ � an cosðanÞð Þ

Case III: m ¼ n; an [ 0

Zr2

0

j2
0

ran

r2

� �
r2dr¼

Zr2

0

r2
2 sin2 ran

r2

� �
r2a2

n

r2dr¼ r2
2

a2
n

Zr2

0

sin2 ran

r2

� �
dr

¼ r3
2

a3
n
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0

sin2ðuÞdu u¼ran
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¼ r3

2
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n

�cosðuÞsinðuÞ
2

þu

2

� �����
an

0

¼� r3
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2
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